Random Walk in an Alcove of an Affine Weyl Group, and Non-colliding Random Walks on an Interval
نویسنده
چکیده
Abstract. We use a reflection argument, introduced by Gessel and Zeilberger, to count the number of k-step walks between two points which stay within a chamber of a Weyl group. We apply this technique to walks in the alcoves of the classical affine Weyl groups. In all cases, we get determinant formulas for the number of k-step walks. One important example is the region m > x1 > x2 > · · · > xn > 0, which is a rescaled alcove of the affine Weyl group C̃n. If each coordinate is considered to be an independent particle, this models n non-colliding random walks on the interval (0, m). Another case models n noncolliding random walks on a circle.
منابع مشابه
A PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملThe affine Hecke algebra
1 The affine Hecke algebra 1.1 The alcove walk algebra Fix notations for the Weyl group W , the extended affine Weyl group W , and their action on Ω × h * R as in Section 2. Label the walls of the alcoves so that the fundamental alcove has walls labeled 0, 1,. .. , n and the labeling is W-equivariant (see the picture in (2.12)). The periodic orientation is the orientation of the walls of the al...
متن کاملNon - Colliding Random Walks , Tandem Queues , and Discrete Orthogonal Polynomial Ensembles
We show that the function h(x) = ∏ i<j(xj − xi) is harmonic for any random walk in Rk with exchangeable increments, provided the required moments exist. For the subclass of random walks which can only exit the Weyl chamber W = {x : x1 < x2 < · · · < xk} onto a point where h vanishes, we define the corresponding Doob h-transform. For certain special cases, we show that the marginal distribution ...
متن کاملRandom Walks in Weyl Chambers and the Decomposition of Tensor Powers
We consider a class of random walks on a lattice, introduced by Gessel and Zeilberger, for which the reflection principle can be used to count the number of K-step walks between two points which stay within a chamber of a Weyl group. We prove three independent results about such "reflectable walks": first, a classification of all such walks; second, many determinant formulas for walk numbers an...
متن کاملAlcove walks and nearby cycles on affine flag manifolds
Using Ram’s theory of alcove walks we give a proof of the Bernstein presentation of the affine Hecke algebra. The method works also in the case of unequal parameters. We also discuss how these results help in studying sheaves of nearby cycles on affine flag manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 97 شماره
صفحات -
تاریخ انتشار 2002